

ISOLATED DC-DC Converter EC4SAW SERIES APPLICATION NOTE

Approved By:

Department	Approved By	Checked By	Reported By
Research and Development Department	Enoch	Danny/Wade Jacky	Joyce
Quality Assurance Department	Ryan	Benny	

Application Note V13 May 2019

Content

1. INTRODUCTION	3
2. DC-DC CONVERTER FEATURES	3
3. ELECTRICAL BLOCK DIAGRAM	3
4. TECHNICAL SPECIFICATIONS	4
5. MAIN FEATURES AND FUNCTIONS	8
5.1 Operating Temperature Range	8
5.2 Over Current Protection	8
5.3 Remote On/Off	8
6. APPLICATIONS	8
6.1 Recommended Layout PCB Footprints and Soldering Information	8
6.2 Power Derating Curves for EC4SAW Series	9
6.3 Efficiency vs. Load Curves	10
6.4 Input Capacitance at the Power Module	13
6.5 Test Set-Up	13
6.6 Output Ripple and Noise Measurement	13
6.7 Output Capacitance	13
7. SAFETY & EMC	14
7.1 Input Fusing and Safety Considerations.	14
7.2 EMC Considerations	14
8. PART NUMBER	19
9. MECHANICAL SPECIFICATIONS	19

Application Note V13 May 2019

1. Introduction

The EC4SAW series offer 5-6 watts of output power in a 0.86x0.36x0.44 inches SIP-8 plastic packages. The EC4SAW series has a 4:1 wide input voltage range of 9-36 and 18-75VDC and provides a precisely regulated output. This series has features such as high efficiency, 1500VDC of isolation and allows an ambient operating temperature range of -40°C to 85°C with de-rating. The features include short circuit protection and remote on/off control. All models are very suitable for distributed power architectures, telecommunications, battery operated equipment and industrial applications.

2. DC-DC Converter Features

- * 5-6W Isolated Output
- * Compact SIP-8 Package
- * Efficiency up to 89%
- * 4:1 Input Range
- * Regulated Outputs
- * Remote On/Off Control
- * 1500VDC Isolation
- * Continuous Short Circuit Protection

3. Electrical Block Diagram

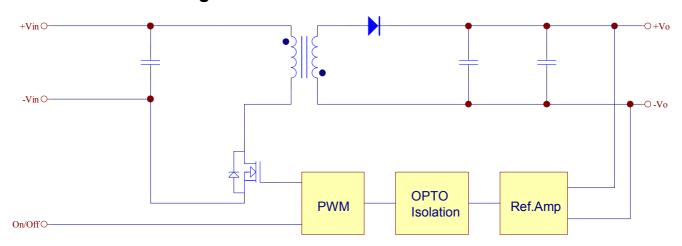


Figure 1 Electrical Block Diagram of single output module

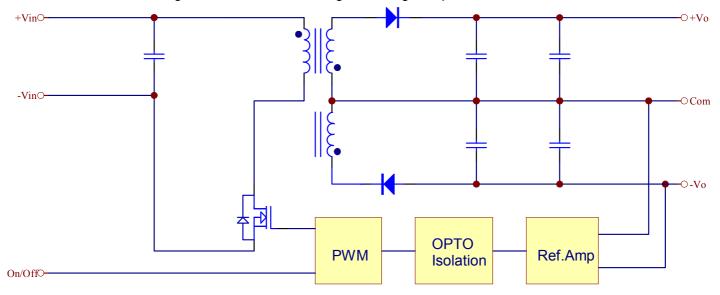


Figure 2 Electrical Block Diagram of Dual output module

4. Technical Specifications

(All specifications are typical at nominal input, full load at 25 $^{\circ}$ C unless otherwise noted.)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Input Voltage						
Continuous		24V _{in}	-0.3		36	V_{dc}
Continuous		48V _{in}	-0.3		75	v _{dc}
Transient	100ms	24V _{in}			50	\
Tansient	TOOMS	48V _{in}			100	V_{dc}
	With de-rating, above 61°C	V _o =3.3V V _o =5V V _o =±5V	-40		+85	
Operating Ambient Temperature	With de-rating, above 65°C	V _o =12V V _o =15V V _o =±12V V _o =±15V	-40		+85	$^{\circ}$ C
Case Temperature		All			105	$^{\circ}\mathbb{C}$
Storage Temperature		All	-55		+125	$^{\circ}\!\mathbb{C}$
Input/Output Isolation Voltage	1 minute	All	1500			V_{dc}

INPUT CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Operating Input Voltage		24V _{in}	9	24	36	\/
Operating Input Voltage		48V _{in}	18	48	75	V_{dc}
Maximum Input Current	100% Load, V _{in} =9V	24V _{in}		800		mA
Maximum input Guirent	100% Load, V _{in} =18V	48V _{in}		400		ША
		24S33N		4		
		24S05N		4		
		24S12N		5		
		24S15N		5		
	V _{in} =Nominal input	24D05N		4		
		24D12N		6		
No-Load Input Current		24D15N		6		mA
No-Load Input Current	V _{In} -Norminal Input	48S33N		3		IIIA
		48S05N		3		
		48S12N		3		
		48S15N		3		
		48D05N		4		
		48D12N		3		
		48D15N		3		
Off Converter Input Current	Shutdown input idle current	All		1		mA
Inrush Current (I ² t)		All			0.01	A ² s
Input Reflected-Ripple Current	P-P thru 12uH inductor, 5Hz to 20MHz	All		10		mA

OUTPUT CHARACTERISTIC

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		V _o =3.3V	3.2505	3.3	3.3495	
		V _o =5.0V	4.925	5.0	5.075	
		V _o =12V	11.82	12	12.18	
Output Voltage Set Point	V _{in} nominal, Io=Io _{max} , Ta=25℃	V _o =15V	14.775	15	15.225	V_{dc}
		$V_o = \pm 5.0 V$	4.925	5.0	5.075	
		$V_o = \pm 12V$	11.82	12	12.18	
		$V_o = \pm 15V$	14.775	15	15.225	
Output Voltage Regulation						
Load Regulation	lo=Full Load to No Load	Single			±0.5	%
		Dual			±1.0	
Line Regulation	V _{in} =High line to Low line Full Load	All			±0.2	%
Temperature Coefficient	Ta=-40°C to 85°C	All			±0.03	%/℃
Output Voltage Ripple and Noise						
Peak-to-Peak	Full Load, 20MHz bandwidth (see 6.6)	All			100	mV
		V _o =3.3V	0		1500	
		V _o =5.0V	0		1200	
		V _o =12V	0		500	
Operating Output Current Range		V _o =15V	0		400	mA
		$V_o = \pm 5.0 V$	0		±600	
		V _o =±12V	0		±250	
		$V_o = \pm 15V$	0		±200	
Output DC Current-Limit Inception	Output Voltage =90% Vo _{nominal}	All		180		%
		V _o =3.3V	0		4700	
		V _o =5.0V	0		2200	
		V _o =12V	0		1100	
Maximum Output Capacitance	Full load, Resistance	V _o =15V	0		470	uF
		V₀=±5.0V	0		1400	
		V _o =±12V	0		660	
		V₀=±15V	0		220	

DYNAMIC CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Output Voltage Current Transient						
Step Change in Output Current	75% to 100% lo_max , di/dt=0.1A/us	All			±5	%
Setting Time (within 1% Vonominal)	di/dt=0.1A/us	All			250	us
Turn-On Delay and Rise Time						
Turn-On Delay Time, From Input	Vin _{min} to 10% Vo _{nominal}	All		15		ms
Turn-On Delay Time, From On/off	V _{on/off} to 10% Vo _{nominal}	All		15		ms
Output Voltage Rise Time	10% to 90%Vo _{nominal}	All		8		ms

EFFICIENCY

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
		24S33N		82		
		24S05N		86		
		24S12N		88		
	V _{in} =12Vdc, lo=lo _{max} , Ta=25°ℂ	24S15N		89		
		24D05N		86		
		24D12N		88		
100% Load		24D15N		88		%
100% Loau		48S33N		82		70
		48S05N		85		
		48S12N		88		
	V _{in} =24Vdc, lo=lo _{max} , Ta=25°ℂ	48S15N		89		
		48D05N		85		
		48D12N		88		
		48D15N		88		
		24S33N		82		
		24S05N		86		
		24S12N		88		
		24S15N		88		
		24D05N		86		
		24D12N		88		
100% Load	V _{in} =Nominal V _{in} , Io=Io _{max} , Ta=25°ℂ	24D15N		88		%
100% Load	V _{in} -Normal V _{in} , 10-10 _{max} , 14-25	48S33N		82		70
		48S05N		85		
		48S12N		89		
		48S15N		88		
		48D05N		85		
		48D12N		89		
		48D15N		89		

ISOLATION CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Isolation Voltage	Input to Output 1 minute	All			1500	V_{dc}
Isolation Resistance	Input to Output	All			1000	$M\Omega$
Isolation Capacitance	Input to Output	All			50	pF

FEATURE CHARACTERISTICS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
Switching Frequency		All		580		KHz
On/Off Control						
Module On	Open Circuit,high impedance	All				
Module Off	Current of V _{on/off} pin	All	2		4	mA
Off Converter Input Current	Shutdown input idle current	All			2.5	mA

GENERAL SPECIFICATIONS

PARAMETER	NOTES and CONDITIONS	Device	Min.	Typical	Max.	Units
IIVLEBE	lo=100%of lo _{max,} Ta=25°C per MIL-HDBK-217F	All		1850		K hours
Weight		All		4.8		g

Application Note V13 May 2019

5. Main Features and Functions

5.1 Operating Temperature Range

The EC4SAW series converters can be operated by a wide ambient temperature range from -40 $^{\circ}$ C to 85 $^{\circ}$ C with de-rating. The standard model has a plastic case and case temperature can not over 105 $^{\circ}$ C at normal operating.

5.2 Over Current Protection

All different voltage models have full continuous short-circuit protection. To provide protection in a fault condition, the unit is equipped with internal over-current protection. The unit operates normally once the fault condition is removed. At the point of current-limit inception, the converter will go into over current protection mode.

5.3 Remote On/Off

The remote on/off input feature of the converter allows external circuitry to turn the converter on or off. Active-high remote on/off is available as standard. The converter is turned on if the remote on/off pin is open circuit. Supplying the on/off pin at 2mA to 4mA will turn the converter off. The signal level of the on/off pin is defined with respect to ground. If not using the on/off pin, leave the pin open (module will be on), recommended application circuit refer figure 3.

On/Off pin appliend current via 1K

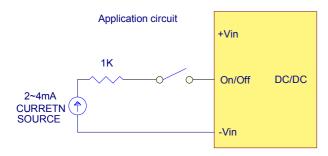
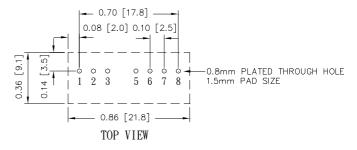
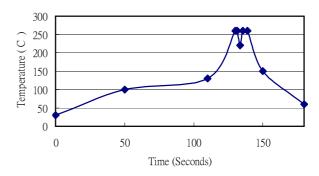



Figure 3 Recommended Application Circuit


6. Applications


6.1 Recommended Layout PCB Footprints and Soldering Information

The system designer or the end user must ensure that other components and metal in the vicinity of the converter meet the spacing requirements to which the system is approved. Low resistance and low inductance pcb layout traces are the norm and should be used where possible. Due consideration must also be given to proper low impedance tracks between power module, input and output grounds. The recommended footprints and soldering profiles are shown as figure 4.

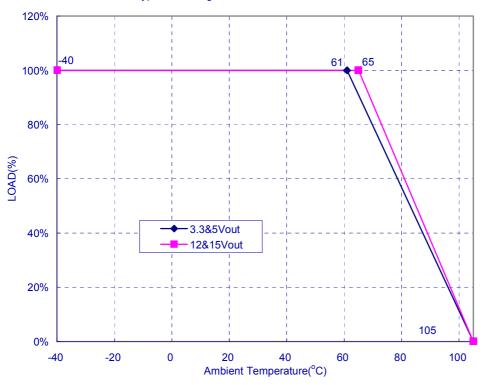
Note: Dimensions are in inches (millimeters)

Note:

- 1. Soldering Materials: Sn/Cu/Ni
- 2. Ramp up rate during preheat: 1.4 °C/Sec (From 50°C to 100°C)
- 3. Soaking temperature: 0.5 $^{\circ}$ C/Sec (From 100 $^{\circ}$ C to 130 $^{\circ}$ C), 60±20 seconds
- 4. Peak temperature: 260°C, above 250°C 3~6 Seconds
- 5. Ramp up rate during cooling: -10.0 $^{\circ}$ C/Sec (From 260 $^{\circ}$ C to 150 $^{\circ}$ C)

Figure 4 Recommended PCB Layout Footprints and Wave Soldering Profiles for SIL packages

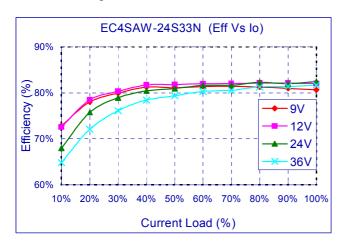
Application Note V13 May 2019

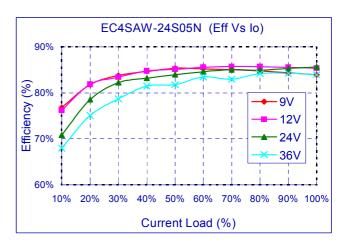

6.2 Power Derating Curves for EC4SAW Series

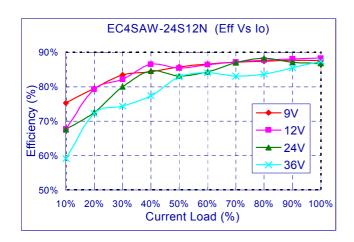
Operating Ambient temperature Range: -40°C \sim 61°C without derating for 3.3&5Vout.

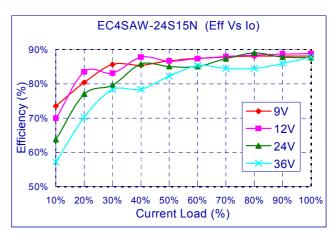
-40°C ~ 65°C without derating for 12&15Vout.

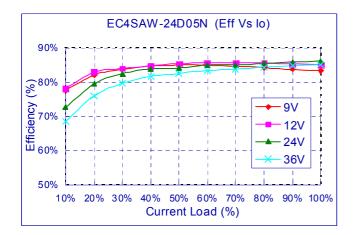
Maximum case temperature under any operating condition should not exceed 105℃.

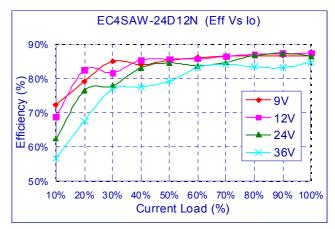


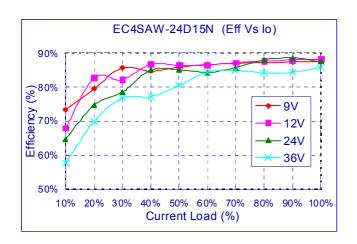


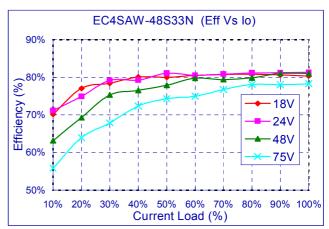


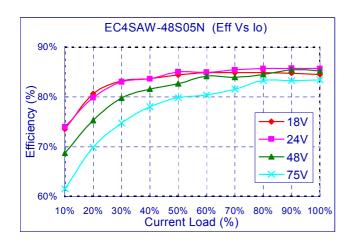

Application Note V13 May 2019

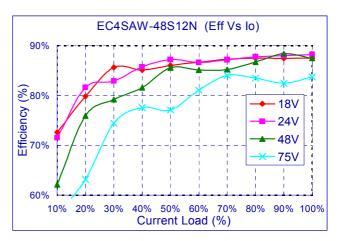

6.3 Efficiency vs. Load Curves

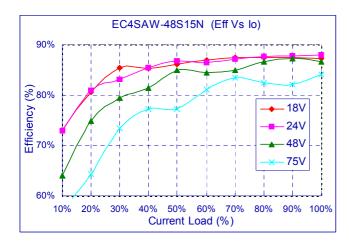


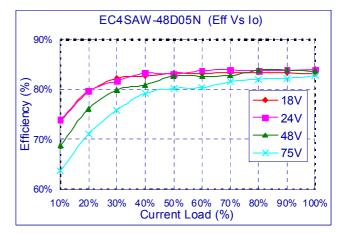


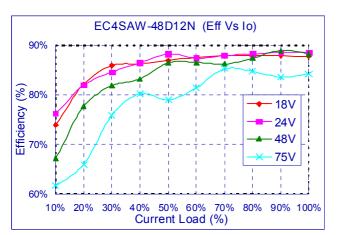


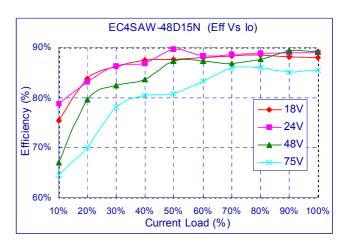




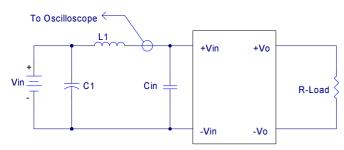

Application Note V13 May 2019







Application Note V13 May 2019



Application Note V13 May 2019

6.4 Input Capacitance at the Power Module

The converters must be connected to low AC source impedance. To avoid problems with loop stability source inductance should be low. Also, the input capacitors (Cin) should be placed close to the converter input pins to de-couple distribution inductance. However, the external input capacitors are chosen for suitable ripple handling capability. Low ESR capacitors are good choice. Circuit as shown in figure 3 represents typical measurement methods for reflected ripple current. C1 and L1 simulate a typical DC source impedance. The input reflected-ripple current is measured by current probe to oscilloscope with a simulated source Inductance (L1).

L1: 12uH C1: None

Cin: 47uF ESR<0.7ohm @100KHz

Figure 5 Input Reflected-Ripple Test Setup

6.5 Test Set-Up

The basic test set-up to measure parameters such as efficiency and load regulation is shown in Figure 5. When testing the modules under any transient conditions please ensure that the transient response of the source is sufficient to power the equipment under test. We can calculate the

- Efficiency
- Load regulation and line regulation.

The value of efficiency is defined as:

$$\eta = \frac{Vo \times Io}{Vin \times Iin} \times 100\%$$

Where

Vo is output voltage,

lo is output current,

Vin is input voltage,

lin is input current.

The value of load regulation is defined as:

$$Load.reg = \frac{V_{FL} - V_{NL}}{V_{NL}} \times 100\%$$

Where

V_{FL} is the output voltage at full load

V_{NL} is the output voltage at no load

The value of line regulation is defined as:

$$Line.reg = \frac{V_{HL} - V_{LL}}{V_{LL}} \times 100\%$$

Where

 V_{HL} is the output voltage of maximum input voltage at full load.

 V_{LL} is the output voltage of minimum input voltage at full load.

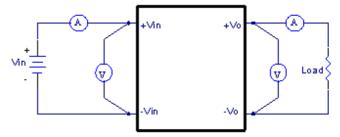
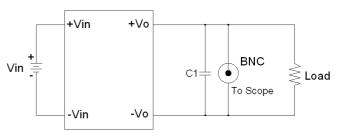
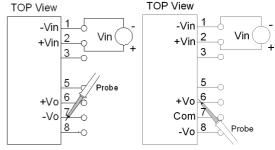



Figure 6 EC4SAW Series Test Setup


6.6 Output Ripple and Noise Measurement

The test set-up for noise and ripple measurements is shown in figure 7 and 8. A coaxial cable was used to prevent impedance mismatch reflections disturbing the noise readings at higher frequencies. Measurements are taken with output appropriately loaded and all ripple/noise specifications are from 5Hz to 20MHz Band Width.

Note: C1: 0.1uF Ceramic capacitor.

Figure 7 Using BNC to Measure Output Ripple and Noise

Single Models

Dual Models

Figure 8 Using Probe to Measure Output Ripple and Noise

6.7 Output Capacitance

The EC4SAW series converters provide unconditional stability with or without external capacitors. For good transient response low ESR output capacitors should be located close to the point of load. These series converters are designed to work with load capacitance to see technical specifications.

Application Note V13 May 2019

7. Safety & EMC

7.1 Input Fusing and Safety Considerations.

The EC4SAW series converters have not an internal fuse. However, to achieve maximum safety and system protection, always use an input line fuse. We recommended a fast acting fuse 1.25A for 24Vin models and 630mA for 48Vin modules. Figure 9 circuit is recommended by a Transient Voltage Suppressor diode across the input terminal to protect the unit against surge or spike voltage and input reverse voltage.

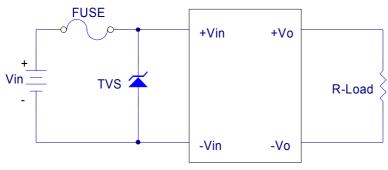


Figure 9 Input Protection

7.2 EMC Considerations

(1) EMI Test standard: EN55022 Class A/B Conducted Emission Test Condition: Input Voltage: Nominal, Output Load: Full Load

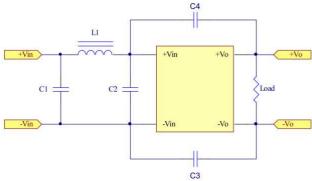
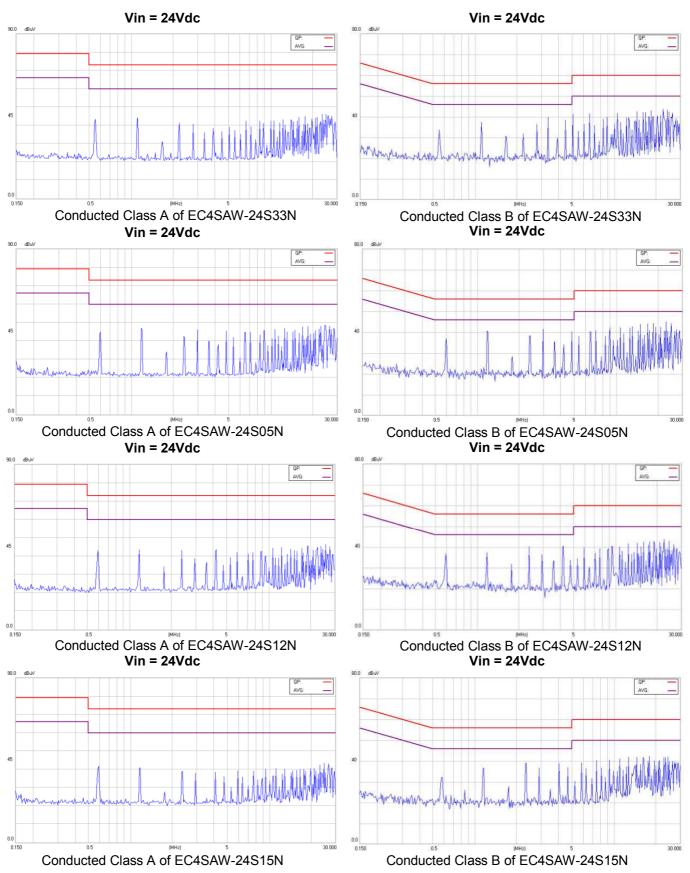
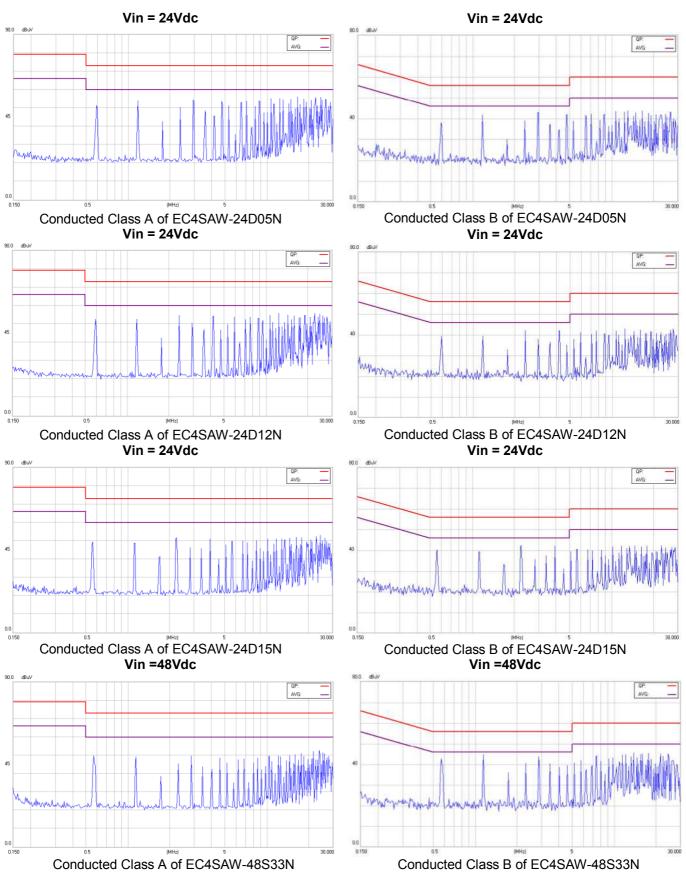
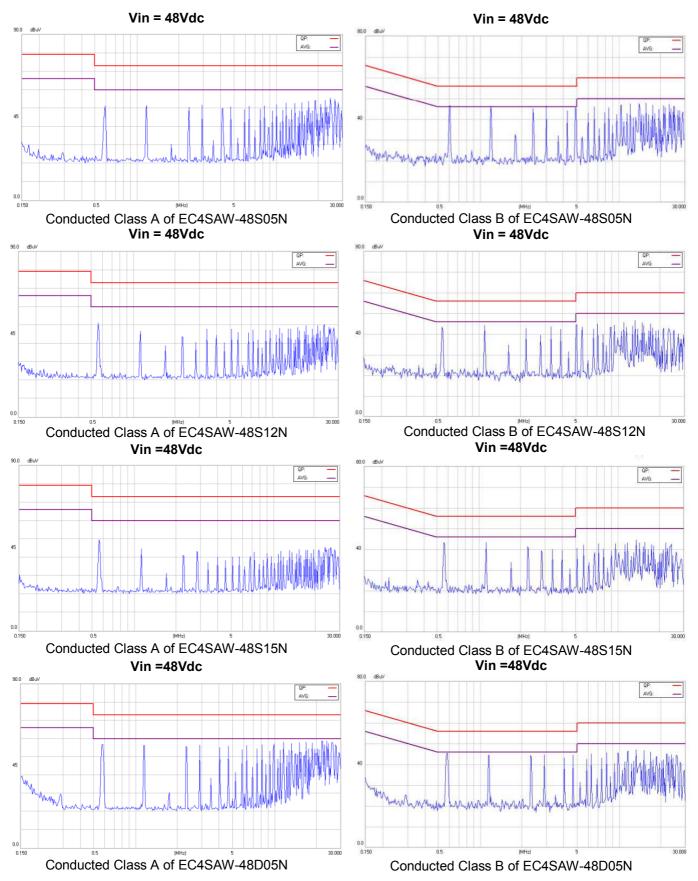
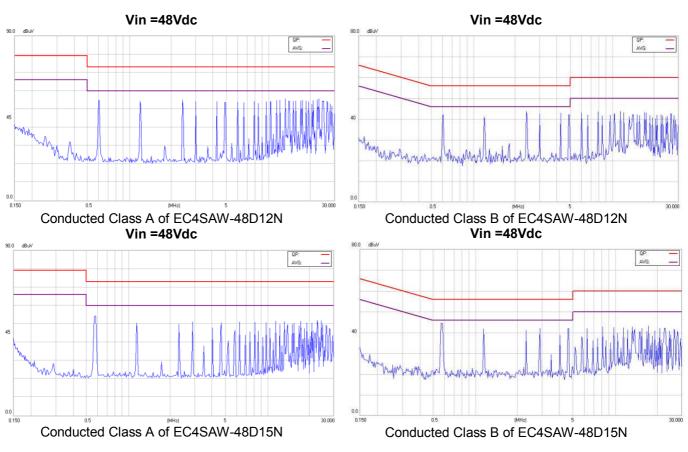



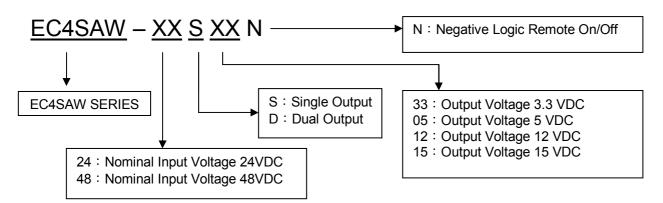
Figure 10 Connection circuit for conducted EMI testing


Model No.		Е	N55022 clas	s A		EN55022 class B				
Wodel 140.	C1	C2	C3	C4	L1	C1	C2	C3	C4	L1
EC4SAW-24S33N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-24S05N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-24S12N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-24S15N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-24D05N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-24D12N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-24D15N	10uF/50V	NC	150pF/2KV	150pF/2KV	10uH	10uF/50V	NC	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48S33N	1uF/100V	NC	150pF/2KV	150pF/2KV		2.2uF/100V	2.2uF/100V	1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48S05N	1uF/100V	NC	150pF/2KV	150pF/2KV		2.2uF/100V		1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48S12N	1uF/100V	NC	150pF/2KV	150pF/2KV		2.2uF/100V		1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48S15N	1uF/100V	NC	150pF/2KV	150pF/2KV		2.2uF/100V		1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48D05N	1uF/100V	NC	150pF/2KV	150pF/2KV		2.2uF/100V		1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48D12N	1uF/100V	NC	150pF/2KV	150pF/2KV		2.2uF/100V		1500pF/2KV	1500pF/2KV	10uH
EC4SAW-48D15N	1uF/100V	NC	150pF/2KV	150pF/2KV	10uH	2.2uF/100V	NC	1500pF/2KV	1500pF/2KV	10uH

Note: All of capacitors are ceramic capacitors







Application Note V13 May 2019

8. Part Number

9. Mechanical Specifications

All Dimensions In Inches(mm)

Tolerances: Inches millimeters

X.XX±0.02 X.X±0.5

Pin ±0.002 ±0.05

	PIN CONNI	ECTION
Pin	Single	Dual
1	-V Input	-V Input
2	+V Input	+V Input
3	On/Off	On/Off
5	NC	NC
6	+V Output	+V Output
7	-V Output	Common
8	NC	-V Output

CINCON ELECTRONICS CO., LTD.

Headquarter Office:

14F, No.306, Sec.4, Hsin Yi Rd.,

Taipei, Taiwan Tel: 886-2-27086210 Fax: 886-2-27029852

E-mail: sales@cincon.com.tw
Web Site: http://www.cincon.com

Factory:

No. 8-1, Fu Kong Rd., Fu Hsing Industrial Park Fu Hsing Hsiang, ChangHua Hsien, Taiwan

Tel: 886-4-7690261 Fax: 886-4-7698031

Cincon American Office:

1655 Mesa Verde Ave, Ste 180, Ventura, CA 93003

Tel: 805-639-3350 Fax: 805-639-4101 E-mail: info@cincon.com