

FEATURES

- Fully EN50155 compliant, no external circuits
- Ultra-wide input range 12:1 reduces product variety
- Excellent efficiency, lowest power loss, full lifetime
- Full power up to +85° without heat sink, no derating
- Active input reverse polarity protection
- Active inrush current limitation network protection
- 10ms hold-up time over the entire input range
- Reinforced insulation, 6mm air/creepage distances
- Trim-output for long cable runs or battery charging
- Parallel and redundant operation
- 10% Peak load capability for 10s
- Remote (on/off) and DC OK with relay changer
- 2 years warranty

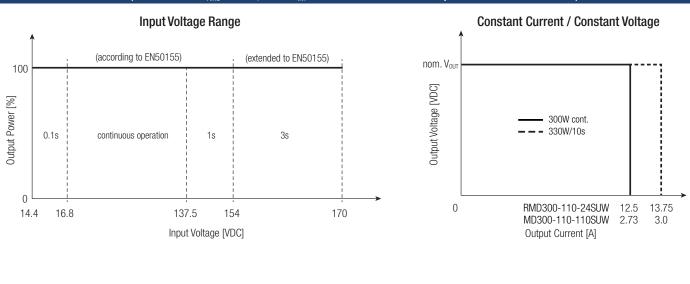
Dimensions (LxWxH): 209.0 x 141.0 x 48.0mm (8.23 x 5.55 x 1.89 inch) 1100g (2.43 lbs)

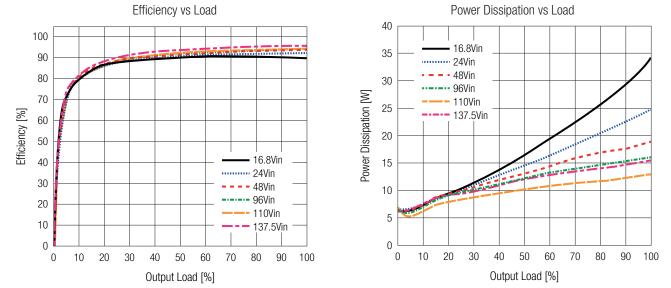
DESCRIPTION

The chassis mountable RMD300 series DC/DC converter is designed for railway rolling stock and transportation applications and is compliant with all relevant standards: EN50155, EN50121-3-2, DB-EMV06, EN50124-1, EN50125-1, EN61373 1B, EN62368-1, EN45545-2. The unit is designed with 12:1 input voltage range to cover the input voltages from 14.4VDC up to 170VDC for nominal 24, 36, 48, 72 and 110V in one range with isolated and regulated 24V output and reinforced isolation system. The base plate mounting permits a wide operating temperature for OT4+ST1&ST2 class from -40°C to +85°C without derating. Input reverse polarity protection, inrush current limitation, 10ms hold-up time, remote control, and output OR-ing diode and efficiency of up to 94.8% round up the functionality of this fully railway compliant Plug&Play unit.

SELECTION GUIDE					
Part Number	Input Voltage Range [VDC]	Output Voltage nom. [VDC]	Output Current max. ⁽¹⁾ [A]	Efficiency typ. [%]	Output Power max. ⁽¹⁾ [W]
RMD300-110-24SUW (2)	16.8-137.5	24	13.75	94	330
RMD300-110-110SUW (2) *coming soon	16.8-137.5	110	3	94	330

Note1: refer to "Peak Load Capability"

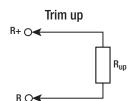

Note2: add suffix "-E" for extended ambient temperature range (-50°C..+90°C) *coming soon without suffix= standard operating range (-40°C..+90°C)

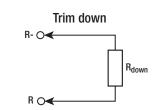

BASIC CHARACTERISTICS (meas	$v_{\rm MB}$ – 20–0, nom. $v_{\rm N}$,			ap unicos ounci	1	T	M
Parameter		Condition			Min.	Тур.	Max.
	refer to "Input Voltage		nom. V _{IN} = 24, 36, 48, 72, 110VDC		16.8VDC		137.5VDC
Input Voltage Range	Range"		rding to	100ms max	14.4VDC		16.8VDC
			50155	1s max.	137.5VDC		154VDC
Input Surge Voltage	3s ma	ax. (extended to					170VDC
Input Capacitance		internal				11µF	
Under Voltage Lockout		rising edg			14.5VDC		15.5VDC
		falling edg			13.5VDC		14.4VDC
		V _{IN} =16.8V				19.8A	
Input Current		V _{IN} = 24VE				13.6A	
		V _{IN} = 110V				2.9A	
Inrush Current	active inrush		ation (<3.5 x Ino	m)			30A
No Load Power Consumption		$V_{IN} = 24VE$				7.1W	
· · · · · · · · · · · · · · · · · · ·		V _{IN} = 110V				7.3W	
		V _{IN} =16.8V				21.4mA	
Standby Current		V _{IN} = 24VE				14.8mA	
(shutdown by remote)	V _{IN} = 110VDC				7.2mA		
		V _{IN} = 137.5VDC				7mA	
		continuous operation			0A		12.5A
	RMD300-110-24SUW	, , , , , , , , , , , , , , , , , , ,	10s max.				13.75A
Output Current Range		refer to "Peak Load Capability" continuous operation			0.4		0.704
					A0		2.73A
		RMD300-110-110SUW 10s max. refer to "Peak Load Capability"					ЗA
	F	RMD300-110-24SUW				24VDC	
Output Voltage		MD300-110-1				110VDC	
				-110-24SUW	19.2VDC	110700	25.2VDC
Output Voltage Trimming	refer to "Output Voltage	Trimming"		110-110SUW	88VDC		115.5VDC
Minimum Load			11112000		0%		110.0100
		V _{IN} = 24VE	00		0.10		1s
Start-up time		V _{IN} = 110V					0.6s
	by us	by using CTRL ON/OFF function					0.3s
Rise time							100ms
		V _{IN} =16.8V	DC			10ms	
Hold-up time		V _{IN} = 24VE				20ms	
		$V_{\rm IN} = 24000$				20ms	
		DC-DC 0			hiah/one		V _{CTRL} <154VDC
ON/OFF CTRL	DC-DC OFF			HO)			$< V_{CTRL} < 2VDC$
Input Current of CTRL pin	DC-DC OFF (pin15 INH connected pin16 INH0) DC-DC ON					10mA	
Internal Operating Frequency						70kHz	
Output Ripple and Noise	over full in	put and load ra	ange, 20MHz BV	V			50mVp-p
Maximum Capacitive Load		onstant currer				50mF	

BASIC CHARACTERISTICS (measured @ T_{AMB}= 25°C, nom. V_{IN}, full load and after warm-up unless otherwise stated)

RMD300-110-24SUW

PEAK LOAD CAPABILITY


Peak power capability supports short power peaks of dynamic loads like motors, relays, storage devices or computer booting sequences. In addition allowing faster charge of load sided capacitors and reliable circuit breaker operation.


P _{nom} P _p	 nominal output power peak output power (330W max) 	[W] [W] Calculation:		ut [W]		
P _r	= recovery power		$\frac{(P_{nom} - P_P) \times t_1}{P_r - P_{nom}} \qquad P_p$,	ז ו	
t ₁	= peak time (10s max)	[S]	$P_r - P_{nom}$			
t ₂	= recovery time (calculated)	[\$]	P _{norr}	1		
	actical Example:		P	r		
Pn Pp Pr t1	$t_2 = - \frac{300W}{280W} = - \frac{100W}{100W} = - $	(300W - 330W) x 10s 280W - 300W	= <u>15s</u> 0		t ₂	→ Time [s]

OUTPUT VOLTAGE TRIMMING

The output voltage of the RMD300-UW can be trimmed between +5% and -20% by using an external trim resistor. The values for the trim resistor are according to standard E96 values; therefore, the specified voltage may slightly vary. Resistor values may be calculated with the following equation:

Calculations:

$$R_{up} \simeq \frac{322k\Omega \times V_{OUTnom} - 306k\Omega \times V_{OUTset}}{V_{OUTset} - V_{OUTnom}}$$

$$\mathbf{R_{down}} \cong \frac{20k\Omega \times V_{OUTset} - 16k\Omega \times V_{OUTnom}}{V_{OUTnom} - V_{OUTset}}$$

Practical Example trim up +5% for RMD300-110-24SUW

$$Rup = \left[\frac{322 kΩ × 24V - 306 kΩ × 25.2V}{25.2V - 24V}\right] = 14000Ω$$

 R_{up} according to E96 $\approx 14k\Omega$

$$\mathbf{R}_{down} = \left[\frac{20k\Omega \times 21.6V - 16k\Omega \times 24V}{24V - 21.6V}\right] = 20000\Omega$$

 \boldsymbol{R}_{down} according to E96 $\approx \underline{20k\Omega}$

RMD300-110-24SUW

Trim up	1	2	3	4	5	[%]					
Vout _{set} =	24.24	24.48	24.72	24.96	25.2	[VDC]					
R_{up} (E96) \approx	1M3	499k	226k	93k1	14k	[Ω]					
Trim down	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	[%]
Vout _{set} =	23.76	23.52	23.28	23.04	22.8	22.56	22.32	22.08	21.84	21.6	[VDC]
R_{down} (E96) \approx	383k	182k	113k	80k6	60k4	46k4	37k4	30k1	24k3	20k	[Ω]
Trim down	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20	[%]
Vout _{set} =	21.36	21.12	20.88	20.64	20.4	20.16	19.92	19.68	19.44	19.2	[VDC]
R_{down} (E96) \approx	16k2	13k3	10k7	8k45	6k65	4k99	3k48	2k21	1k05	0	[Ω]

RMD300-110-110SUW

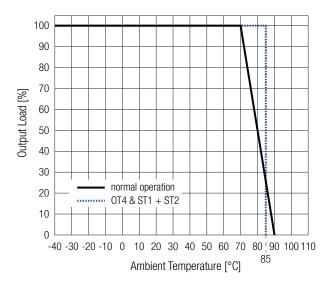
Trim up	1	2	3	4	5	[%]					
Vout _{set} =	111.1	112.2	113.3	114.4	115.5	[VDC]					
R_{up} (E96) \approx	1M3	499k	226k	93k1	14k	[Ω]					
Trim down	-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	[%]
Vout _{set} =	108.9	107.8	106.7	105.6	104.5	103.4	102.3	101.2	100.1	99	[VDC]
R_{down} (E96) \approx	383k	182k	113k	80k6	60k4	46k4	37k4	30k1	24k3	20k	[Ω]
Trim down	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20	[%]
Vout _{set} =	97.9	96.8	95.7	94.6	93.5	92.4	91.3	90.2	89.1	88	[VDC]
R_{down} (E96) \approx	16k2	13k3	10k7	8k45	6k65	4k99	3k48	2k21	1k05	0	[Ω]

REGULATIONS (measured @ T _{AMB} = 25°C, nom. V _{IN} , full load and after warm-up unless otherwise stated)						
Parameter	Conditions	Value				
Output Accuracy		±1.0% max.				
Line Regulation	low line to high line, full load	0.1%				
Load Regulation	10%-100% load	0.1% typ.				
Transient Response	10-90% load, V _{IN} = 16.8-137VDC	0.5VDC				
	recovery time	40ms typ.				

PROTECTIONS (measured @ T _{AMB}	= 25°C, nom. V _{IN} , full loa	d and after warm-up unl	ess otherwise stated)	
Parameter		Туре		Value
Internal Input Fuse				T30A, slow blow type
Short Circuit Protection (SCP)	constant current mode,	RMD300-1-	10-24SUW	>110% of nom. output current
	auto recovery	RMD300-11	0-110SUW	>110-125% of nom. output current
Short Circuit Input Current		$V_{IN}=24VDC$		0.8A typ.
		V_{IN} = 110VDC		0.4A typ.
Input Reverse Polarity Protection		active protected		-137.5VDC
Over Voltage Protection (OVP)	latch off	RMD300-1	10-24SUW	28.8VDC - 32.5VDC
Over voltage Protection (OVP)	Idicit off	RMD300-11	0-110SUW	132VDC-148.5VDC
Over Voltage Category (OVC)		according to EN 50124-1:20	18	OVC III
Over Current Protection (OCP)	auto rocovoru	RMD300-1	10-24SUW	>110%-125% of nom. output current
Over Current Protection (OCP)	auto recovery	RMD300-11	0-110SUW	>110%-135% of nom. output current
Over Temperature Protection (OTP)		shut down, auto recovery		$T_{AMB} = >90^{\circ}C$
Class of Equipment				Class I
Isolation Coordination		according to EN 50124-1:20	18	V _{NOM} = 300VDC
	DC tested / AC rated	I/P to O/P		5kVDC / 3.5kVAC
	DC lesleu / AC faleu	I/P to PE and	d O/P to PE	3kVDC / 2kVAC
Isolation Voltage (3)		I/P to O/P, 1	0 seconds	2.8kVDC
	routine test	for 10 seconds on safety	I/P to O/P	3kVAC
		components	I/P to PE and O/P to PE	2.8kVDC
Isolation Resistance				100MΩ max.
Isolation Capacitance				650pF max.
Leakage Current				10µA
Insulation Grade				reinforced
		I/P to O/P		6mm
Internal Clearance		I/P to PE		4mm
		O/P to PE		3mm

Note3: For repeat Hi-Pot testing, reduce the time and/or the test voltage

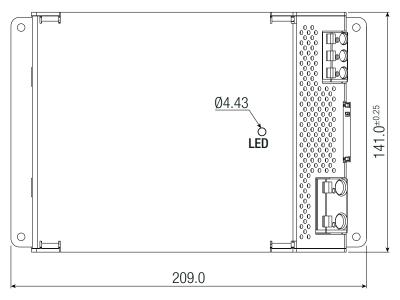
POWER GOOD			
Parameter	Тур)e	Value
	RMD300-110-24SUW	$V_{OUT} = > 17 VDC$	green
Power OK LED	NIVID300-110-2430W	$V_{OUT} = < 17 VDC$	light off
Fower OK LED	RMD300-110-110SUW	$V_{OUT} = > 80 VDC$	green
		$V_{\text{OUT}} = < 80 \text{VDC}$	light off
	RMD300-110-24SUW	$V_{\text{OUT}} = > 17 \text{VDC}$	OK: OK2 connected OK or OK1 not connected OK
Dolov Statua	NIVID300-110-2430W	$V_{OUT} = < 17 VDC$	NOK: OK1 connected to OK or OK2 not connected OK
Relay Status	RMD300-110-110SUW	$V_{OUT} = >80VDC$	OK: OK2 connected OK or OK1 not connected OK
		$V_{OUT} = < 80 VDC$	NOK: OK1 connected to OK or OK2 not connected OK
Relay Capability			0.5A/150VDC


ENVIRONMENTAL (measured @ T _{AMB} = 25°C, nom. V _{IN} , full load and after warm-up unless otherwise stated)								
Parameter	Conditions	Value						
Operating Ambient Temperature Range		with derating	-40°C to +90°C					
	according to EN 50155 operating temperature class OT4	without derating	-40°C to +70°C					
nango	and extended operating temperature class ST1 & ST2	without derating for 15 minutes	-40°C to +85°C					
Maximum Baseplate Temperature			+95°C					
Temperature Coefficient			0.2%/K					
Operating Altitude	according to EN 50124-1:20	2000m (OVC III)						
Operating Altitude		5000m (OVC II)						
Operating Humidity	non-condensing	95% RH max.						

ENVIRONMENTAL (measured @	${\ensuremath{\mathbb P}}\ T_{\mbox{\tiny AMB}}{\mbox{=}} 25^{\circ}{\mbox{C}},$ nom. $V_{\mbox{\tiny IN}},$ full load and after warm-u	p unless otherwise stated)	
Conformal Coating (4)	according to EN 50155		Class PC2
Pollution Degree		PD2	
IP Rating			IP20
Design Lifetime			20 years
MTBF	according to IEC61709/ UTE C80-810	T_{AMB} = +40°C	1360 x 10 ³ hours
IVI I DF		T_{AMB} = +55°C	850 x 10 ³ hours
Useful Life Class	according to EN50155:2018	L4	

Note4: The board is protected on both sides with a protective / transparent / fluorescent / coating. The coating is compliant with class 2, according to IPC-A-610G: 2017

Derating Graph


ENVIRONMENTAL (RAILWAY STANDAR	IDS)	
Parameter	Conditions	Value
Low Temperature start-up test	Temperature: -40°C Stabilization time 2h	EN 60068-2-1 (Ad)
Dry heat test	Temperature: +70°C Continuous operational checks time 6h	EN 60068-2-2 (Be) – Cycle A
Low temperature storage test	Temperature: -40°C Low temperature exposition time 16h	EN 60068-2-1 (Ab)
Cyclic damp heat test	Temperature: +70°C/+25°C Number of cycles: 2 Time 2x 24h	EN 60068-2-30 (Db)
Simulated long-life testing	Random Vibration, unit not powered during test Frequency range 5-150Hz with -6db/oct from 20 to 150Hz Vertical axis 5.72m/s ² for 5h [ASD 0.964(m/s ²) ² /Hz] Transverse axis 2.55m/s ² for 5h [ASD 0.192(m/s ²) ² /Hz] Longitudinal axis 3.96m/s ² for 5h [ASD 0.461(m/s ²) ² /Hz]	EN 61373 clause 9, class B Body mounted
Shock testing	Half-sine shock, unit powered during test Vertical axis 30m/s ² for 30ms Transverse axis 30m/s ² for 30ms Longitudinal axis 50m/s ² for 50ms Number of shocks: 18 (3x polarity for each axis)	EN 61373 clause 10, class B Body mounted
Functional random vibration test	Random Vibration, unit powered during test Frequency range 5-150Hz with -6db/oct from 20 to 150Hz Vertical axis 1.01m/s ² for 10min [ASD 0.0301(m/s ²) ² /Hz] Transverse axis 0.45m/s ² 10min [ASD 0.006(m/s ²) ² /Hz] Longitudinal axis 0.7m/s ² 10min [ASD 0.0144(m/s ²) ² /Hz]	EN 61373 clause 8, class B Body mounted
Fire Protection on Railway Vehicles		EN45545-2 Hazard Level HL1 - HL3

SAFETY & CERTIFICATIONS (110VOUT PENDING)		
Certificate Type (Safety)		Standard
Audio/video, information and communication technology equipment. Safety requ	irements	IEC/EN62368-1:2020+A11:2020
Railway applications - Insulation coordination - Part 1: Basic requirements - electrical and electronic equipment	Clearances and creepage distances for all	EN50124-1
Railway Applications - Electrical Equipment used on rolling stock		EN50155
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Conditions	Standard / Criterion
Railway applications - Electromagnetic compatibility		EN50121-3-2:2016+A1:2019
Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments		EN61000-6-4:2007+A1:2011
ESD Electrostatic discharge immunity test	Air: ±2, 4, 8kV Contact: ±2, 4, 6kV	IEC61000-4-2:2009, Criteria A EN61000-4-2:2008, Criteria A
Radiated, radio-frequency, electromagnetic field immunity test	20V/m (80-1000MHz) 10V/m (1000-2000MHz)	IEC/EN61000-4-3:2006, Criteria A
Fast Transient and Burst Immunity	DC Power Port: ±2kV	IEC/EN61000-4-4:2012, Criteria A
Surge Immunity	DC Power Port: ±0.5, 1kV line sym. DC Power Port: ±0.5, 1, 2kV line unsym.	IEC/EN61000-4-5:2014, Criteria A
Immunity to conducted disturbances, induced by radio-frequency fields	10Vr.m.s. (0.15-80MHz)	IEC/EN61000-4-6: 2016, Criteria A
Railway applications - Electromagnetic compatibility		EN50121-3-2:2016+A1:2019
Technische Regeln zur Elektromagnetischen Verträglichkeit: Nachweis der Funkverträglichkeit von Schienenfahrzeugen mit Bahnfunkdiensten		Regelung Nr. EMV 06:2019

DIMENSION & PHYSICAL CHARACTERISTICS		
Parameter	Туре	Value
Material	Case	aluminum
Dimension (LxWxH)		209.0 x 141.0 x 48.0mm 8.23 x 5.55 x 1.89 inch
Weight		1100g typ. 2.43 lbs

Dimension Drawing (mm)

	\square
\bigcirc	

Tolerance Table		
Dimension range	Tolerances	
0.5 - 6 mm	±0.1 mm	
6 - 30 mm	±0.2 mm	
30 - 120 mm	±0.3 mm	
120 - 315 mm	±0.5 mm	
FC – fiving centers		

DIMENSION & PHYSICAL CHARACTERISTICS

 $.5^{\pm 0.20}$

61.

20.0

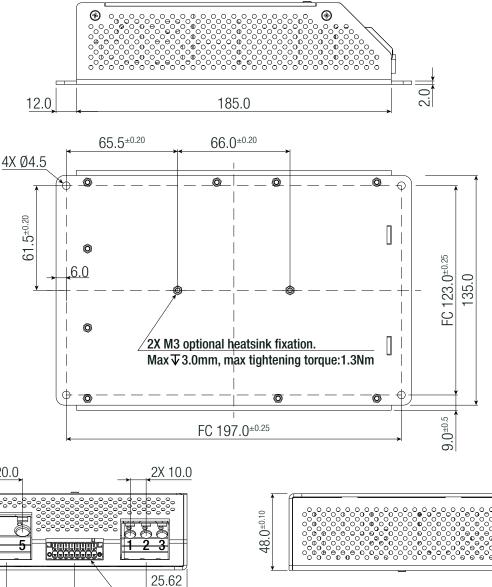
70.59

3

7 9 11 13 15

הההההה

੦ਙ|੩|੩|੩|੩|੩


4 6 8 10 12 14 16

4

28.0

6.5

Signal CON3

olgilal oollo			
(Phoenix DMC 1,5/ 8-G1F-3,5-LR)			
#	Function	#	Function
16	INHO	15	INH
14	NC	13	NC
12	OK	11	OK2
10	OK	9	OK1
8	NC	7	NC
6	CS1	5	CS2
4	R	3	R-
2	R	1	R+

Signal CON3 **Compatible Connector**

Phoenix DFMC 1,5/ 8-STF-3,5 - 1790357

Input connector CAGE CLAMP® CON1

(WAGO 745-353)

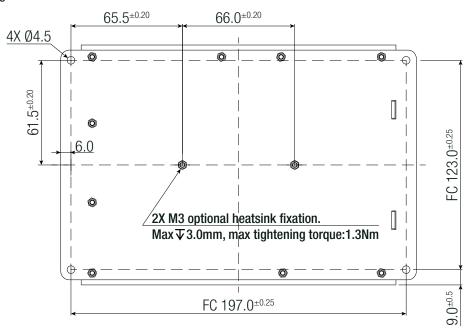
#	Function	AWG	Wire diameter
1	-Vin	24-10	0.25-4mm ²
2	+Vin	24-10	0.25-4mm ²
3	PE	24-10	0.25-4mm ²

wire stripping length: 11-12mm Conductor connection direction to PCB 45°

Output connector CAGE CLAMP® CON2

(WAGO 745-602/006-000)

	(,
#	Function	AWG	Wire diameter
4	+Vout	24-6	0.25-10mm ²
5	-Vout	24-6	0.25-10mm ²


wire stripping length: 12-13mm Conductor connection direction to PCB: 45°

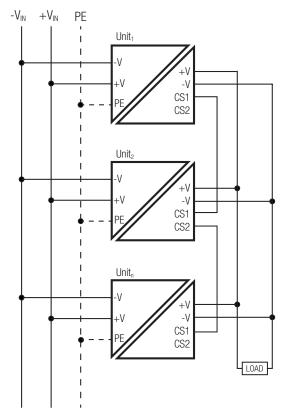
Tolerance Table		
Dimension range	Tolerances	
0.5 - 6 mm	±0.1 mm	
6 - 30 mm	±0.2 mm	
30 - 120 mm	±0.3 mm	
120 - 315 mm	±0.5 mm	
FC = fixing centers		

INSTALLATION & APPLICATION

Mounting Instructions

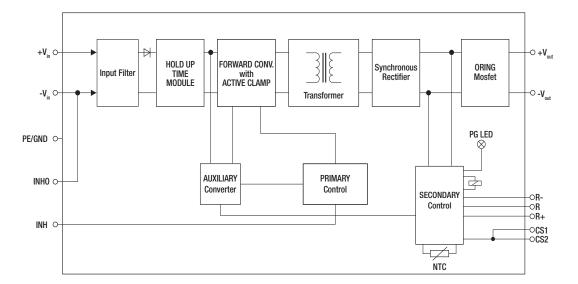
For operation of the DC/DC converter the PE connection at the intended connection point as part of the overall EMC concept is mandatory.

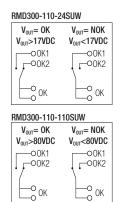
Natural air convection around the unit must be possible at any time and the temperature shall not be exceeded.


The RMD converter has to be installed with 4 x M4 screws and can be mounted in any mounting direction.

All control and signal terminals have been tested and have passed the requirements according to the EN50121-3-2 regulations, nevertheless for installation conditions with cable lengths above 30m, maybe additional protection against disturbances will be necessary.

INSTALLATION & APPLICATION


Parallel Operation


Here the example of three parallel connected units. CS1/CS2 is a double connection of the same pin to be able to connect more than two units.

BLOCK DIAGRAM

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	cardboard box	145.0 x 53.0 x 218.0mm
Packaging Quantity		1pc
Storage Temperature Range		-40°C to +85°C

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.